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A spatially nonlocal model for polymer desorption
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Abstract. In order to describe diffusion of a penetrant in a polymer entanglement network, one must incorporate
nonlocal effects. Most previous models have included nonlocality in time only; however, by exploiting the disparate
length scales in such systems, one can model these effects by a partial integrodifferential equation which is nonlo-
cal in space. When considering the case of diffusion near the glass-rubber transition, a moving boundary separates
the polymer into two regions, each governed by a different set of PDEs. The desorption of a semi-infinite poly-
mer is studied using singular perturbation methods. Layers arise at the exposed surface, at the moving boundary,
and initially. Analytical and phase-plane solutions are obtained for the solution, which exhibits physically real-
istic forms of desorption overshoot. Thus, spatially nonlocal models have the potential to replicate experimental
systems, and should be considered in concert with other viscoelastic models of polymer-penetrant systems.
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1. Introduction

Due to its wide industrial applicability, desorption of penetrants from saturated polymer
matrices is of keen interest to experimentalists and scientists. One unusual feature of such
systems is the change in the polymer from a rubbery state when it is nearly saturated to a
glassy state when it is nearly dry. As part of the drying process, a glassy region often devel-
ops at the exposed surface of a polymer. If this region is dry enough, it can form a glassy
skin whose properties are significantly different from the rest of the polymer-penetrant solu-
tion. One typical system where this occurs is in the desorption of acetone or methanol from
poly(methyl-methacrylate), or PMMA [1-4].

This phenomenon, called literal skinning [5-7], has many industrial applications. When
drying wood, foods, or other agricultural products, the skinning behavior is manifested as
“case hardening” [8-10], which can lead to residual stresses that can cause buckling and warp-
ing. Skinning behavior has been observed for over a half century in dry spinning and mem-
brane production processes [11, 12]. This glassy skin can be exploited for the production of
more effective protective clothing, equipment, or sealants from polymer materials [13, Chapter
17], [14, Chapter 1, Section 4.9], [15]. On the other hand, polymer skinning is undesirable in
coating processes due to a decrease in the drying rates and the formation of nonuniformities
in the polymer coating [5, 16].

An even more unusual phenomenon, called trapping skinning, can also occur. In trapping
skinning, an increase in the force driving the desorption will actually decrease the accumulated
flux through the boundary [3, 11, 17-19]. These various anomalous features of the skinning
process cannot be explained by simple Fickian diffusion, which postulates that the chemical
potential of the system is a function only of the penetrant concentration C.
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There are many different theories for why skinning and its associated anomalies occur,
including phase separation [20, Section 6], crystallization [21], and diffusion-induced convec-
tion [22]. Many scientists believe that one important factor is a nonlocal dependence of the
dynamics upon the configuration of the polymer entanglement network. In many polymer-
penetrant systems, these nonlocal effects are as important to the transport process as the well-
understood Fickian dynamics [23].

Most studies of such nonlocal behavior have focused on viscoelastic memory effects: that
is, those that are nonlocal in time only (for instance, see [24-26]). These nonlocal effects in
time arise by assuming that the chemical potential is a function not only of C, but also of a
viscoelastic stress in the polymer [27]. But there are also substantial changes and disparities
in length scales in polymer-penetrant systems. These changes must be investigated to see what
role they play in the diffusion process.

Polymers form very long chains which can be orders of magnitude larger than the pene-
trant molecules. The chains intertwine to form an entangement network consisting of a series
of interconnected “pockets” through which the penetrant molecules diffuse [28, Chapter 4].
In the rubbery state, the network is disordered, but after the glass transition, the network
becomes more highly ordered and even crystalline [29].

Since the intersection of various long polymer chains form these pockets, penetrant diffu-
sion will depend not only on local properties, but also properties within a neighborhood of
size B!, which we shall call the dependence length. Thus, we examine the possibility that
some of the nonlocal effects are spatial in nature, as in some stochastic models of this type
of behavior [30, Chapter 4], [31, p. 288].

We study a model previously presented in [32], where B! corresponds to the radius of the
smallest sphere that contains all the polymer chains forming the walls of a pocket. Clearly g8
depends on the strength of the entanglement of the polymer network, which is directly related
to the amount of penetrant C [28, Chapter 8].

As mentioned above, many models with nonlocal time effects rely on the assumption that
the chemical potential does not depend on penetrant alone. In [32], the author adapts this
hypothesis by assuming that the chemical potential depends not on C and stress, but on C
and a “pseudostress” &. This pseudostress depends nonlocally on the spatial distribution of
C and its gradient, with B characterizing the decay of the “spatial memory.”

In [32], a model is presented which is linear in the gradient of C. This then introduces the
concept of a “preferred direction”, as might be seen in a diffusion-induced convection model
[22]. We adapt the model in [32] to enforce a symmetric dependence on the gradient, thus
eliminating this artifice.

By choosing such a nonlocal spatial model with symmetric dependence on the gradient,
we obtain a partial integrodifferential equation for the penetrant concentration. This can
then be restated as a system of two coupled partial differential equations. By making phys-
ically appropriate assumptions, the system is reduced to a moving-boundary-value problem
(MBVP), where different operators hold on either side of the glass-rubber interface.

We examine the desorption of a semi-infinite saturated polymer film exposed to a dry-
ing environment. Figure 1 shows a schematic of the various regions in the problem. Though
the glass-rubber interface moves like Vi, where 7 is time, the system exhibits several non-
Fickian behaviors. Because of the strong dependence of & on C, the polymer is dry to
leading order in the glassy region; hence the solutions exhibit the unusual phenomenon
of desorption overshoot, where the minimum in the concentration occurs in the interior of
the domain. Such behavior has also been seen in models with nonlocal viscoelastic effects
[33].
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Figure 1. x—t schematic of system.

This behavior causes the problem to be singularly perturbed, and boundary and interior
layers are necessary in the glassy region, as shown in Figure 1. Numerical and phase-plane
arguments are used to construct the solutions in the layers, while the outer solutions are
found analytically. Reasonable conditions on the pseudostress are derived in order to ensure
solutions. Some discussion is presented of an initial layer in the system where the full set of
equations must hold.

2. Governing equations

As described above, the geometry of the polymer network (especially the pocket structure)
implies that the diffusion of penetrant at (x, #) will be affected by the material properties of and
the dynamics in a neighborhood about the point (%, 7). To incorporate these effects of polymer
entanglement networks into our model, we introduce the following nonstate variable &:

~ 2
. 1 o Mol aC g
PR —nCE,D+v| =&, 0| texp|-
2 ) 0X

where n>0 and v are constants.

As written in (2.1), the exponential part of 6 models the decaying spatial nonlocality in
the polymer network, with a characteristic dependence length f~!. The dynamics of pene-
trant transport that are “remembered” are encapsulated in the braced term. The form chosen
achieves three key goals:

[ B(C(z,D)dz

} di’, @.1)

(1) It includes the dynamics of both C and its gradient.

(2) It is symmetric in dC/d%, which is desirable to eliminate a preferred direction, as dis-
cussed in Section 1.

(3) Because a quadratic term is used, rather than |9C /9|, it can be thought of as the first
part of a Taylor series for a more complicated function f(C,dC/d%).

Here the sign of n has been chosen so that a positive uniform concentration corresponds
to a positive pseudostress. In addition, we expect that the first braced term (which has an
analogy to a local swelling term in the viscoelastic case) will dominate the expression, since
the gradient terms are second-order effects. This size ordering will become explicit when the
equations are scaled.
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Note that ¢ satisfies the evolution equation

~\ 2
a 1 9o aC
_[,B(C) 8xi| B(C )o_—nC—l—v(ax) , 2.2)

which is quite similar to the viscoelastic evolution equation in [26] with /97 replaced by
32/3%% — in other words, we replace one part of the diffusion operator with another. Phys-
ically, one can also think of 6 as a quantity that diffuses through the polymer. This would
necessitate replacing the first term in (2.2) with the complete diffusion operator. But then tak-
ing a quasisteady-state approximation of such an equation would result in the form in (2.2).
As discussed in [32] (which can be consulted for further details), we propose that the
chemical potential depends not only on C, but also on &. Thus conservation of mass becomes
oC 0 |~ ~0C ~ ~ 90
FTimrT |:D(C)¥+E(C)B_i:|’ (2.3)
where E(C) is a pseudostress diffusion coefficient and D(C) is the molecular diffusion
coefficient.

At this stage the reader may ask why 8, D, and E depend only on C, rather than &. On a
basic level, ¢ depends on C, so all the parameters may be written with the simpler functional
form. More fundamentally, by making the parameters depend on & directly, we would intro-
duce nonlocal effects into their evolution. For the viscoelastic case it has been shown [34, 35]
that introducing nonlocal effects into the parameters does not change the nature of the sys-
tem. Keeping in mind the parallels between this model and the viscoelastic case, we hence
keep the similar functional form shown for our parameters.

Equations (2.2) and (2.3), which form the full nonlinear system we must solve, are com-
plicated enough that it would require a complete numerical solution in order to solve them
in general. Unfortunately, such numerical solutions do not easily show the dependence of the
solution on the underlying material parameters. Thus we wish to use a singular perturbation
approach to derive analytical solutions.

This can be effected by noting that, as described above, the polymer entanglement net-
work can be characterized by two states. When the penetrant concentration is less than some
threshold value C,, the polymer is glassy and characterized by well-ordered, severely entan-
gled polymer chains. If C > C,, the polymer is rubbery, the network disentangles, and the
characteristic length of a chain grows [23, 29]. Hence B(C) increases greatly as the polymer
goes from the glassy to the rubbery state. Since the differences in B(C) within states are less
important than differences berween states, we model B(C) by its average in each phase, yield-
ing the following functional form:

Be, 0<C<C,

C)= S
PO Br, Cy<C=C,

Br > Bg, (2.4)

113 7: 113 ”

where sub- and superscripts refer to the glassy region and sub- and superscripts refer
to the rubbery region. D and E will also be chosen piecewise constant, as described later in
this section.

Clearly these piecewise-constant functional forms are a simplification; the true dependence
length is a smooth function of C. Nevertheless, the use of such a simplified model has a long
history of yielding analytically tractable results which match experiment well [12, 36-40]. With
these piecewise-constant functional forms, our system becomes an MBVP for the glass-rubber
interface §(f), which separates the X plane into glassy and rubbery domains.
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Also, a real experimental system will deal with an initially saturated slab of finite thickness.
However, if the slab is relatively thick, it may be modeled by the more analytically tractable
case of a semi-infinite polymer. Moreover, we choose the concentration in the slab initially to
be a uniform value C..

To simplify the problem, we introduce dimensionless variables. We scale x by the longer,
more experimentally observable glassy length scale, and concentrations by the initial concen-
tration. We scale the pseudostress so that the nonlinear term in (2.2) is O(1), and the time
scale to simplify the dimensionless form of E. In summary, we have

=iy 1=DBCEy s0=AD, Clen= "0, (2.50)
&%, D(C) E(C)

)=————, D(C)=——, FEC)=——, 2.5b

oD=IEEn DO= e EO="f (2.5b)

where Eg is the value of E in the glassy region.

We make several additional physically reasonable simplifying assumptions so that the
problem is more analytically tractable. As with 8(C), the molecular diffusion coefficient D(C)
also increases dramatically as the polymer goes from the glassy to rubbery state [37]. The true
increase is continuous; some authors model it with an exponential [21, 41]. However, in order
to obtain analytic solutions, we follow the lead of [12, 36-40] and perform the same sort of
averaging we use with 8 to obtain our functional form for D(C):

ng OSCSC*v

Dy > Dy. 2.6
Dl’a C>C*a ' £ ( )

D(C)= {
In addition, we use the same technique for the pseudostress coefficient. With the scalings in
(2.5), its functional form becomes
1, 0<C<C,,
E(C)= =t Er>1. 2.7)
E:,, Cy.<(C<l,
As in [32], we take B;/By =€ to be the small parameter we use in our perturbation
approach. Substituting (2.5-2.7) in (2.2) and (2.3), we have the following equations in the
glass:

aCe 92ce  9%08

o _p e oo 2.8
Jat & 9x2 + ox2 (2.8a)
3208 aCce\?

O ot=—belet () p= (2.8b)
9x2 ox Vﬂécc

where the size of b is chosen to emphasize that we expect the C# term in (2.8b) to dominate.
Substituting (2.5-2.7) in (2.2) and (2.3), we obtain the following equations in the rubber:

Tk 92cr 920"

o~ Do Thga (2-92)
90" aCm\?

2% = e 2C 4! : (2.9b)
9x2 ax

Now we postulate appropriate boundary and initial conditions for our problem. As dis-
cussed above, we have scaled the concentration by the uniform initial condition. Thus we have

C(x,0)=1. (2.10)
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At the exposed interface x =0, we must apply two conditions. The first is a radiation con-
dition: that is, the flux through the inside of the film is proportional to the difference between
the concentration at the edge of the film and the exterior concentration Cex. For simplic-
ity, we examine the case of a large mass transfer coefficient k£ so that the evolution proceeds
quickly:

D(C)% 0,1)+ E(C)z—i(O, 1) =ke V2[C(0, 1) — Cext]- (2.11a)
The choice of the exponent —1/2 will be explained in Section 3.

Due to the form of the evolution Equation (2.2), we must impose a second boundary con-
dition on the pseudostress at the exposed edge x =0. (This is in contrast to the viscoelastic
case, where an initial condition for the stress must be imposed.) Since (2.11a) already provides
a conditon on do/dx, we now impose a Dirichlet conditon on o:

o (0, 1) =0in (1), 2.11b)

where the subscript “in” stands for “interface”. Note that this boundary condition is generic
enough to model various situations which might occur in the lab, and we expect experiments
to suggest what the proper form of o, should be.

Since the MBVP we have created between rubber and glass is a mathematical construct,
we must choose what conditions to impose at the moving boundary s(¢). Some authors treat
the dymanics at s(z) with a kinetic-type condition [21, 38]. However, since the true physical
parameters in the problem are all continuous, we impose continuity of the dependent variables
at s(¢). In particular, the concentration must be continuous at a specified transition value Cy:

C'(s(1),)=Cy=CE(s(2),1). (2.12a)
The pseudostress must also be continuous, though we do not know its value:
o'(s(r), 1) =08(s(2), 1). (2.12b)

Lastly, the flux across the interface must be continuous. Given the fact that (2.12a) holds, this
condition becomes the following:
(DrE + Era—") sT@),n= (DgE + a—“) (s~ (), 1). (2.12¢)
ax dax dx  ox

There may be some concern about whether imposing continuity of the dependent variables
is consistent with our piecewise-constant choice of parameters. However, since do/dx can have
a discontinuity across the interface (it is only the combined term forming the flux that can-
not), (2.2) can be satisfied in an integral sense across the jump at s(z).

In the remaining sections we use perturbation methods to analyze our system as described
above. In Section 3 we derive the concentration in the glassy region. Since the outer solution
does not match our boundary conditions, layers must be inserted near the boundary x =0
and the moving interface x =s(¢). In Section 4 we derive the remaining outer solutions and
use them to determine the behavior of the moving front x =s(¢). Our solutions do not fully

satisfy the initial conditions, and so an initial layer must also be inserted. Since such a layer
does not appreciably affect the solution, it is discussed in Appendix A.
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3. Preliminaries

We now examine the glassy region. We assume a perturbation series for our solutions in e:
CiE(x,t;0)=CS(x. )+ 0,  of(x,1;6)=05(x,1)+O('?), (3.1)
where the size of the error term is motivated by (2.11a). Substituting (3.1) in (2.8), we obtain

g 208 2 8
acs  9%CE 9o

o fax2 + ax2’ (3-22)
2
3oy aCs
0 g —1 8 0
3x2 —O'O = —bE CO + <W) . (32b)
The leading order of (3.2b) is given by
C§EO, (3.3)

and hence we see that a glassy skin has formed where the polymer is dry (to leading order).
However, the leading order of (2.11a) becomes

C5(0,1)=Cext. (3.4

Equation (3.4) implies that on the ¢ time scale, the exposed edge is always glassy. There-
fore, there must be an initial layer where the polymer quickly transitions from rubber to glass.
This high rate of desorption in the rubber has been observed experimentally [38, 42, 43]; more
discussion of the initial layer can be found in Appendix A.

3.1. BOUNDARY LAYER

Since (3.3) does not satisfy (3.4), there must be a boundary layer about x =0. Thus we intro-
duce the following boundary-layer scaling:

Cox, 0 =CHEN+0ED), o, 10=00EN+0E),  E=—5 (35
€

Substituting (3.5) in (2.8a) and integrating, we see that to leading order (O (e~'/?)), the flux

must be constant in the interface. But the flux in the outer region is O(l), so we must have

that

0, 2C8 9% (3.62)
gg E Y .0a
In addition, substituting (3.5) in (2.11a) yields
acy  dop b
Dg¥+¥ (& l‘)=k[CO(0, 1) — Cext]. (3.6b)
Note that the choice of €1/2 in (2.11a) forces a dominant balance in (3.6b).
Combining (3.6), we must have that
Co(0, 1) = Cext. (3.7a)

Upon substituting (3.7a) in (3.6b), we see that to leading order, there is no flux through the
interface. This is physically reasonable, because here the leading order is O(e~!/?). Since the
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Figure 2. Phase-plane characterizing boundary- and Figure 3. Plot of oé’ and C(l)’ in boundary layer.

interior-layer solutions. The separatrix is indicated
with a thin line; the thick line is the solution
indicated.

skin is known to slow desorption [16, 17], it is clear that the flux through the skin should be
no larger than O(1). The last condition needed for our layer problem is a matching condition;
we note from (3.3) that the appropriate one for our problem is

CQ(00,1)=C§(0,1)=0. (3.7b)

Substituting (3.5) in (2.8b), we obtain, to leading order,

2
9o b [3Ce
—J—p — .
70 Cy+ 5 ] (3.82)
2
92cy ICy
Dg—=2L —pCl=—| =2 3,
TS Cy (35 ) , (3.8b)

where in the second line we have used (3.6a). The second-order ODE (3.8b) may be written
as a phase-plane system which has a saddle point at the origin corresponding to the matching
condition given by (3.7b). After choosing the following parameters:

Dg=1,  b=2, (3.92)

we plot the phase plane in Figure 2.
Because the matching condition at & =co corresponds to the saddle point, the solution we
seek is a segment of one of the two stable separatrices. Upon choosing

Cext =1/4, (3.9b)

the portion of the separatrix representing the solution is easily drawn using (3.7a), as indi-
cated in Figure 2. We may also use the rather amazing fact that (3.8b) can be integrated once
to yield

172
acy bDg | 2CP 2¢p
) PR fuinsd ) Juanl Y | -=2 : 3.10
08 2 | D, TP\ D, (3-10)

where we have taken the negative square root since Cg is always decreasing. We may solve
(3.10) numerically given the condition (3.7a).
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We would also like to compute the pseudostress, which necessitates integrating (3.6a) once
more. Thus we need the boundary condition on o at & =0, which is simply given by (2.11b).
Integrating (3.6a) using (3.7a) and this constraint, we obtain

0L (E, 1) = Dg(Cext — CO) +0in (). (3.11)

Now that we have expressions for both the concentration and o, we can plot our solutions
once we choose our remaining parameters:

L=1/2, o) =0. (3.12)

Figure 3 shows a graph of both Cg and crg’ on the same graph for the parameters in (3.9)
and (3.12). Here &£ =0 corresponds to the boundary, so we see that Cg =C, and cré’ =0 there.
Thus we have a smooth (but sharp) transition from the values at the exposed interface to the
values in the glassy skin. Note that in order for the flux through the interface to remain mod-
erate, the large concentration gradient in the layer between the interface and dry value must
be balanced by an equally large and oppposite psuedostress gradient.

3.2. INTERIOR LAYER

Since (3.3) does not satisfy (2.12a), there must also be an interior layer about x =s(¢). Thus
we introduce the following interior-layer scaling:

= x;—jz(t) CE(x,t;€)=Cy (5, 1) +€2Cy (¢, 0 +o(e'/P), (3.13a)
of(x,t;€) =0, (¢, 0)+€ 0] (¢, 1) +o(e'/?). (3.13b)

Substituting (3.13) in (2.8a) and integrating, we again can use order-of-magnitude arguments
to determine that the leading-order flux must be zero at the moving front:
Do 2% 3.14

Substituting (3.13) in (2.8b), we obtain the following, to leading order:

9% _ e (2 2 3.15
s =+ ) (3.15)

But (3.14) and (3.15) contain the same operators as (3.6a) and (3.8a). The only difference is
the fact that (3.7b) is replaced by the new matching condition

Cy (—00,1)=C5(s(t), 1) =0. (3.16)

Thus in this case a portion of the unstable separatrix is required.
Note that the boundary ¢ =0 now corresponds to the front x =s(¢), so the boundary con-
dition is

Cy(0,0)=C.. (3.17)

Then using (3.17), we may easily indicate that portion of the separatrix corresponding to our
solution, as shown in Figure 2. The parameters are the same as used above.



230 D.A. Edwards

257

Nm 201
F1.2
1 15.

ro0.8

104
|06 — left-hand side

Fo.4 51
o Foo right hand side
= - - : . . T T T T » So
3T @5 % ds 4 Ws o 077704 o2 03 04 05
Figure 4. Plot of o, and C; in interior layer. Figure 5. Plot of the expressions in (4.11). Solid

lines: 0y, =0, Dg=1. Dotted lines: oj, =1, Dg=1-8.

Because of the similarities between the operators, (3.10) is replaced by

_ _ _\Al2
aC bD, [ 2C 2C
0 g 0 0
0 _ /=820 Y , 3.18
o 2 {Dg +6Xp( D, )} (3.13)

where we have taken the positive square root since C is always increasing.

We would also like to compute o, which necessitates integrating (3.14) once more. Since we
have already used the condition at { =—o0, we must use the condition at the front x =s(¢),
which corresponds to ¢ =0. To calculate this value, we examine the pseudostress in the rub-
bery region. We assume a perturbation series for our rubbery solutions in e:

C'(x,1;€)=Ch(x, )+ 0(/?),  o"(x,1;€)=0f(x, 1)+ O(e'/?). (3.19)
Substituting (3.19) in (2.9b), we have the following, to leading order:

ol = —bCl, (3.20)
and hence o, (0,7) =bC.. Integrating (3.14) using (3.17) and this fact, we obtain

0y (¢,1)=Dg(Cx— Cy) +bCi. (3.21)

Now that we have expressions for both the concentration and o, we can plot our solutions,
again using the parameters above. Figure 4 shows a graph of both C; and o, on the same
graph for the parameters in (3.9) and (3.12). Here ¢ =0 corresponds to the front, so we see
that C; = C. there. Note there is an internal maximum in the pseudostress associated with
the change of state from rubber to glass. This maximum has been seen in other theoretical
[44-46] and experimental [47] studies of these types of systems.

4. Computing the solution

4.1. OUTER SOLUTIONS

We now examine the outer solution for o in the glassy region. Substituting (3.3) in (3.2a)

yields
28
9“0,
9x2

—0. @.1)
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The boundary conditions on (4.1) are given by the matching conditions as we exit each of the
layers. Solving (4.1) subject to these conditions, we obtain

08(x, 1) =[DgCext +oin(1)] [1—i]+(Dg+b)C* Al (4.2)

s(t) s(1)

In order to complete the coupling of the glassy and rubbery regions, we substitute (3.13)
in (2.12¢) to obtain, to leading order,

D 8C_1_+80—1_ (0,1)=(D +bE)aC6(s(t) 1) 4.3)
& ac ac ’ f " ox o :

where we have used (3.14) and (3.20). The other condition may be obtained by examining the
next order of (2.8a) and the left matching condition in the interior layer:

p,CCL T G (4.42)
o902 T a2 T T ac :
<D 8C—1_+80—1_> (—o0 t)=<D 8—C§+ai§) (s(),1) (4.4b)

£ ar ' ac ’ £ ax | ox T

where the dot indicates differentiation with respect to . Integrating (4.4a) subject to (4.4b)
and then evaluating the result at { =0, we have

Df)C_f_|_8cr_f © t)—aiog( (), t)=—sC 4.5)
e Tag )Ty T T '

where we have used (3.3), (3.16), and (3.17). Combining Equations (4.3) and (4.5) using (4.2),
we obtain the following:

0% (s(t), 1) = (DgCy +bCy) —[DgCext + 0in (1)]

(Dy+DE})
0x s

—$Cy. (4.6)

Equation (4.6) now provides the necessary boundary condition on the rubbery solution to
couple the states together. It is quite similar to the interface condition for a one-phase Stefan
problem, with a few key differences. The presence of an s in the denominator is unusual, but
has been seen in viscoelastic MBVP models of these systems [26]. Also, the sign of the § term
is negative, while the flux is positive. This problem is obviated by the first term on the right-
hand side of (4.6), though clearly this places restrictions on the size of oj,, which we shall
investigate in more detail below. Lastly, the variance of oj, () makes the general problem more
complicated than that of a standard Stefan problem.

To obtain the operator that holds in the rubber, we substitute (3.19) and (3.20) in (2.9a)
to obtain

r 21

Lot r
o= (DrbE) ——2 (4.7)

Note that the equation is Fickian in nature, since the rubbery state of the polymer is much
closer to a Fickian system than is the glass [14, p. 42]. However, the effects of the pseudo-
stress are still felt via the bE; term. The remaining conditions on Cjj come from the leading
order of (2.10) and (2.12a):

Chx,00=1, Ci(s(t),1)=C,. 4.8)
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We simplify our work by specializing to the case of constant o;,(¢) in (4.6). Then (4.6-4.8)
may be solved by using a standard similarity-variable approach in the variable x/+/f. Thus the
front must move like 7!/2; for later algebraic simplicity we take

s(1) =2s0y/(Dr + DE1. (4.9)

Since no coupling terms appear in (4.7) and (4.8), we may solve for the solution in the
rubber first, then use (4.6) to solve for the interface position. Due to the simple form of the
boundary conditions, all solutions are then written in terms of error functions. In particular,
solving (4.7) subject to (4.8), we have that

C —
c{)(x,r)=1+e*

1 X
f . 4.10
e s ¢ (2«/(1)r —i—bE_r)t) (4.10)

4.2. THE FRONT POSITION

The last piece of information needed is sy, which can be obtained by substituting (4.10) in
(4.6):

1 1— C* 2 Oin Dg(c* - Cext) +bC*
D:+bE;) | — - C — = . 4.11
(Dr+DEy) |:ﬁ <€I‘fC SO) exp( SO) + 50 *j| + 250 250 ( )

It can be shown that in order for there to be exactly one positive root sp, the following con-
dition must be satisfied:

0in < Dg(Cy — Cext) + bCi. 4.12)

This condition on the surface pseudostress is quite similar to conditions imposed on the
surface concentration to model the self-regulation of a polymer network [27, 33, 48, 49].

Figure 5 shows a graph of the left- and right-hand sides of (4.11). Here all parameters
which did not vary were given the values in (3.9) and (3.12), and we have used the values

D=2, E,=3. 4.13)

The intersection point of the left-hand side and right-hand side curves corresponds to the
value of sg for the front. As Dg increases, from (2.12c) we note that the flux through the front
increases. Since penetrant is being conveyed more quickly to the exposed surface, the front
speed increases. On the other hand, as oj, increases, from (4.2) we see that Baog /0x decreases
in order to reach the same value of o at the front. Thus the flux through the front and hence
its speed decreases.

To examine the variation of sg with C, and Cey, we rewrite (4.11) as

1 1-C, 2 Cy«(b+ Dg) DgCext +0in
D.+bE) | — — C,|— =— . 4.14
(D; +bEy) [ﬁ (erfc So) exp( 90) + 50 *:| 750 250 (4.14)

Figure 6 shows a graph of the left- and right-hand sides of (4.14). Again the intersection
point is the value of sg determining the front. As C, increases, the front speed increases. This
is because not as much solvent needs to desorb, and hence the front moves faster. From (4.2)
we see that Cex¢ plays a role in the glassy flux calculation similar to that of oj,. Therefore, as
Cext increases, the front speed decreases.

The dependence of the front speed on the other three parameters (D;, E;, and b) is more
subtle, since s depends on them not only through s¢, but also through (4.9). Thus, for these
parameters, we simply plot the dependence of the front speed on them in Figure 7. Note that
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Figure 6. Plot of the expressions in (4.14). Solid Figure 7. Plot of s//t vs. parameters in (4.9). In
lines: Cy =1/2, Cext = 1/4. Dotted lines: C, =2/3, increasing order of thickness: Dy, Ey, b.
Cext:1/3~

because of our choice of Dy in (3.9a), the graph for D, starts at 1, since D; > D,. Similarly,
our graph for E. must start at 1.

As D; and E; increase, the front speed decreases. From Figure 5 we see that the bracketed
quantity on the left-hand side of (4.11) is an increasing function of sy. Thus, to balance the
same glassy flux, an increase in either D; or E; causes a reduction in sg. This reduction in sy
is large enough to overwhelm the square-root dependence in (4.9). On the other hand, as b
increases, the front speed increases. This is because increasing b also increases the glassy flux,
which keeps the bracketed quantity from decreasing, which keeps s¢ increasing.

4.3. SOLUTION PROFILES

Now that we have all necessary expressions for the functions, we can construct plots of our
solution profiles. Given the previously listed parameters, we obtain

50~0-1807. (4.15)

Figure 8 shows a graph of the concentration vs. x for the times listed. Note the desorp-
tion overshoot in the glass as the concentration dips below the surface concentration before
rising to C, in a small layer near the front.

Figure 9 shows a graph of the o vs. x for the times listed. Note the increasing pseudo-
stress in the glassy region. These sorts of internal extrema, which are related to the buildup
of stress associated with the glass-rubber change of state, have been seen in viscoelastic mod-
els of desorption [45, 46] and sorption [44] problems, as well as experimentally [47]. The flux
contribution from o in this region overwhelms the contribution from the concentration, thus
forming an overall negative flux which continues the desorption of the polymer. The large
negative gradient to the pseudostress in the layer near the front balances the large positive
gradient in the concentration, as shown in (3.14), leading to an O(1) total flux.

5. Conclusions

When saturated polymers near the glass-rubber transition temperature are desorbed, a glassy
region will often form near the exposed surface. The formation of this skin cannot be
described by Fick’s Law alone. Due to the disparate length scales in the polymer network,
it is reasonable to include nonlocal spatial dependence to model the nonstandard effects.
Following [32], we assume that the chemical potential depends not only on the concentration
C, but also on the pseudostress &, which incorporates the nonlocal spatial dependence. Such
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an assumption results in a single partial integrodifferential equation which can be split into a
set of two coupled partial differential equations.

Though these equations can be solved numerically, often it is the dependence of solutions
on material parameters that is critical to understanding the underlying physics. Thus analyti-
cal solutions are needed, which necessitate the use of asymptotics and perturbation methods.

In order to solve the system analytically, we choose piecewise-constant forms for our non-
linear parameters 8, D, and E. The resulting MBVP has the standard diffusion operator in
the rubber, reflecting the fact that without a crystalline glassy structure, a polymer solution
has behavior closely approximating a Fickian substance. Nevertheless, the effect of the poly-
mer structure is seen in the effective diffusion coefficient, which includes both D, and E;.

In the glass, o obeys a steady-state diffusion operator, and the concentration is zero to
leading order. Thus, our model exhibits the phenomena of skinning, behavior also seen in vis-
coelastic models for polymer-penetrant systems [4, 5, 18, 19, 45, 46]. Since CE=0 is less than
the interface values, the solution also exhibits desorption overshoot, as described in [33]. Thus
to match the conditions at the exposed and glass-rubber interfaces, we insert boundary and
interior layers in the concentration, each of which obeys the same nonlinear ODE. Because of
the relationship between o and C, we also need layers for the pseudostress. The solutions for
o exhibit maxima for x near but less than s(¢), which is consistent with a buildup in stress
as the polymer changes states [44-47].

At x =s(t), a Stefan-like condition was derived to couple the two operators. Though the
presence of s in the denominator in one of the terms is unusual, it has been seen previously
in viscoelastic MBVP models of these systems [26]. In addition, with the physically reasonable
assumption of a constant imposed pseudostress, a similarity-variable approach can be used,
and the front moves in a purely Fickian way. A condition on o at the exposed interface is
necessary to assure a solution; this condition is quite similar to the self-regulation found in
other models of these systems [27, 33].

Though viscoelastic models have been used for years to describe non-Fickian diffusion
phenomena, such models ignore the disparate length scales in a polymer-penetrant system.
Though this oversight may be troubling from a theoretical perspective, the key question exper-
imentally is whether ignoring spatial nonlocalities causes deficiencies in the model.

At the very least, by carefully validating our results by comparing them to experiments
and the results of other models, we gain confidence that spatial nonlocalities have a role to
play in certain polymer-penetrant systems. These agreements have been seen in both sorption
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and desorption contexts. Whether this role is supplementary, complementary, or necessary will
be determined only upon future examinations of polymer-penetrant systems.

Appendix A: Remarks on an initial layer

Note from Figure 8 that if we continue our solutions back towards t =0, the moving front is
going to impinge upon the stationary boundary layer solution C(l)’. Since Cg is fixed in ¢, there
must be an initial layer where the two layer solutions coalesce. As can be expected in such
a singular perturbation problem, the layer equations become quite complicated, and so they
would need to be solved numerically. Therefore, in this section we simply present the equa-
tions and discuss how their solutions would smoothly transition into the solutions previously
derived.
To construct this layer at the corner of the x— plane, we let

Ce(x,1;€)=Ch(&, 1)+ 0(Y?), o8(x,1;€)=0i(€, 1)+ O(e'/?), (Ala)
X t

E=—, T=-. (Alb)
€2 €

These scalings imply that &/./T7 = x/+/t, so our new variables obey the original
similarity-variable law.

Substituting (Al) in (2.11a) and (2.8b), the leading order is again given by the operators
in (3.6b) and (3.8a). Substituting (A1) in the conservation of mass equation yields the same
operator as in (2.8a) because our new variables obey the similarity-variable law. Thus by com-
bining the operators in (3.8a) and (2.8a), we have the following evolution equation for C':

. . 2
ac) 39*C} . fac)
Ge =D b+ (5 ) (A2)

which is not solvable in closed form.
The initial layer in the glass implies an initial layer in the rubber. Thus we assume the fol-
lowing forms:

C'(x,1;6)=C{ ¢, )+ 0, o'(x,t;6) =0 (£, )5+ 0. (A3)

Substituting (A3) in the conservation of mass equation, we obtain the same operator as in
(2.9a) because of the similarity-variable law. The leading order of (2.9b) becomes

act\’
0

which, when combined with the operator in (2.9a), yields
SN S L o' ? A
at " T ag2 Tog2 \ ag |

which is also not solvable in closed form.
Nevertheless, we may make the following remarks to indicate how Equations (A2) and
(A4) resolve any problems we might encounter when taking our outer solutions as ¢t — 0:
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A.l. POLYMER MUST INITIALLY BE RUBBERY

With the boundary condition for C' being given by (3.6b), we note that Cé(O, 7) # Cext for all
7. Instead, it evolves over time, finally reaching Cext as T — oo, where the steady state of the
governing operator (2.8a) implies that the flux becomes zero. Since the concentration at the
boundary changes with time, we may now track the evolution of the surface concentration
from its initial value of 1. Thus for some 1 < t,, the polymer is completely in the rubber.
This contrasts with our original formulation, where s(0) =0 and the interface is immediately
glassy. In the interval 0 <t <rt,, the radiation condition is given by substituting (A3) into
(2.11a), which also leads to the operator in (3.6b). Because of this form, we see that the flux
through the interface is O(e~!/?) when the polymer is rubbery. This comports with experi-
mental results indicating that desorption is faster in the rubber than in the glass [38, 42, 43].

A.2. FRONT PROGRESSION IN INITIAL LAYER

If we denote the front position in the initial layer as & =s¢(7), then s¢(7:) =0. Since the scal-
ing for & is the same as the scaling for ¢ in (3.13a), we see that { =& —sg, and hence is no
longer a layer. Thus s; = O(1) and one can track the front’s progression through the corner
layer directly without inserting another internal layer.

A.3. REPLICATION OF PREVIOUS BOUNDARY AND INTERNAL LAYERS

As t — oo, for finite & equation (A2) reduces to (3.8b). Thus there is a smooth transition
to the boundary-layer solution C(t)’ about £ =0 and to the interior-layer solution C~ about
& =s¢(7) [since both obey the operator in (3.8b)].

A.4. REPLICATION OF PREVIOUS RUBBERY SOLUTION

As & and 7 get large in such a way that &/./T =x/+/f remains constant, (A4) reduces to (4.7)
on the (x,¢) scale. Thus our initial-layer solution matches our previous rubbery solution.
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